Quotients of Hypersurfaces in Weighted Projective Space

نویسنده

  • GILBERTO BINI
چکیده

In [1] some quotients of one-parameter families of Calabi-Yau varieties are related to the family of Mirror Quintics by using a construction due to Shioda. In this paper, we generalize this construction to a wider class of varieties. More specifically, let A be an invertible matrix with non-negative integer entries. We introduce varieties XA and MA in weighted projective space and in P, respectively. The variety MA turns out to be a quotient of a Fermat variety by a finite group. As a by-product, XA is a quotient of a Fermat variety and MA is a quotient of XA by a finite group. We apply this construction to some families of Calabi-Yau manifolds in order to show their birationality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Chow Groups of Weighted Hypersurfaces

We extend a result of to Esnault-Levine-Viehweg concerning the Chow groups of hypersurfaces in projective space to those in weighted projective spaces.

متن کامل

Mirror Symmetry for Hypersurfaces in Weighted Projective Space and Topological Couplings

By means of toric geometry we study hypersurfaces in weighted projective space of dimension four. In particular we compute for a given manifold its intrinsic topological coupling. We find that the result agrees with the calculation of the corresponding coupling on the mirror model in the large complex structure limit.

متن کامل

The Number of Rational Quartics on Calabi-yau Hypersurfaces in Weighted Projective Space P(2, 1)

We compute the number of rational quartics on a general Calabi-Yau hypersurface in weighted projective space P(2, 1). The result agrees with the prediction made by mirror symmetry.

متن کامل

Weighted Projective Varieties

0. Introduction i. Weighted projective space i.i. Notations 1.2. Interpretations 1.3. The first properties 1.4. Cohomology of 0F(n) 1.5. Pathologies 2. Bott's theorem 2.1. The sheaves ~(n) 2.2. Justifications 2.3. Cohomology of ~$(n) 3. Weighted complete intersections 3.1. Quasicones 3.2. Complete intersections 3.3. The dualizing sheaf 3.4. The Poincare series 3.5. Examples 4. The Hodge structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009